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Abstract

Let D be a division ring with centre F . Denote by D∗ the multiplica-

tive group of D. The relation between valuations on D and maximal

subgroups of D∗ is investigated. In the finite dimensional case, it is

shown that F ∗ has a maximal subgroup if Br(F ) is nontrivial provided

that the characteristic of F is zero. It is also proved that if F is a lo-

cal or an algebraic number field, then D∗ contains a maximal subgroup

that is normal in D∗. It should be observed that every maximal sub-

group of D∗ contains either D′ or F ∗, and normal maximal subgroups

of D∗ contain D′, whereas maximal subgroups of D∗ do not necessarily

contain F ∗. It is then conjectured that the multiplicative group of any

noncommutative division ring has a maximal subgroup.

Let D be a division algebra of finite dimension over its centre F . Denote by

D′ the commutator subgroup of the multiplicative group D∗ = D − {0}. For

any field F , we use the notation Br(F ) for the Brauer group of F . In [1], [2]

and [5], the structure of maximal subgroups and finitely generated subnormal

subgroups of D∗ is investigated and it is shown how these subgroups sit in D∗

with respect to F ∗ and D′. The aim of this note is to show that the existence of

maximal subgroups of F ∗ is essential to study those of D∗. In fact, it is shown

that if F ∗ has no maximal subgroups, then Br(F ) is trivial. In this connection,

we observe that the multiplicative group of an algebraically closed field has no

maximal subgroups whereas there exist fields that have no maximal subgroups
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but are not algebraically closed. As another example, R∗, the multiplicative

group of real numbers of R, has only one maximal subgroup which is associated

to the absolute value of R and there is only one non-commutative division

algebra of finite dimension over R. The situation is much better for the field

of rational numbers Q. It is shown later that Q∗ has infinitely many maximal

subgroups which are associated to the valuations of Q and it is well known that

Br(Q) is infinite. We shall try to establish a connection between valuations on

a field F and maximal subgroups of F ∗ and D∗, where D is a division algebra

with centre F . To be more precise, we characterize all maximal subgroups of

the field of rational number Q∗ with respect to set of all valuations on Q. As

for maximal subgroups of D∗, it is proved that if M is a maximal subgroup of

D∗ not containing F ∗, then Z(M) is a maximal subgroup of F ∗. Furthermore,

assume that D is of finite dimension over F and m is a maximal subgroup of

F ∗ containing Z(D′). It is shown that D∗ contains a maximal subgroup M

containing m that is normal in D∗. Using these results, we prove if F is a field

with a Krull valuation whose value group contains a maximal subgroup, and

D is a division algebra of finite dimension over its centre F , then D∗ contains

a maximal subgroup M which is normal in D∗. We then apply these results

to division algebras over algebraic number fields and local fields to show that

in these cases D∗ contains maximal subgroups which are normal in D∗. In

contrast, we shall show that the multiplicative group of the real quaternions

contains no normal maximal subgroups. It is generally believed that for any

division ring D, D∗ has a maximal subgroup. In this connection, it is also

proved that if D is finite dimensional over its centre F and F admits a discrete

valuation, then D∗ contains a maximal subgroup. Finally, it is proved that,

under certain mild conditions, each non-zero element of a division algebra D

is contained in a maximal subgroup of D∗. We begin the material of this note

with the determination of maximal subgroups of multiplicative groups of usual

number systems in the following

Lemma 1. Let Q, R, and C denote the field of rational, real, and complex

numbers, respectively. Then we have

(a) For any natural number r ≥ 3, consider the epimorphism fr from Q∗ onto
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Gr :=
+∞
⊕

i=1
Z(i)

r given by the rule fr(x) = (νpi
(x)), where Z(i)

r
∼= Zr the ring of

integers modulo r, for each i, pi is the i-th prime number and νpi
is the pi-adic

valuation on Q and νpi
(x) is the remainder of νpi

(x) modulo r. Suppose further

that f2 is an epimorphism from Q∗ onto G2 := Z2
⊕

(
+∞
⊕

i=1
Z

(i)
2 ) , given by the

rule f2(x) = (sgn x, (νpi
(x))), where sgn x denotes the sign of x. If M is a

maximal subgroup of Q∗, then there exists a prime number q and a maximal

subspace W of Gq (Gq is a vector space over Zq) such that M = f−1
q (W ).

Conversely, for any prime q and any maximal subspace W of Gq, f
−1
q (W ) is

a maximal subgroup of Q∗.

(b) R∗ has only one maximal subgroup.

(c) If F is an algebraically closed field, then F ∗ contains no maximal subgroup.

In particular, C∗ has no maximal subgroup.

Proof. (a) It is clearly seen that the map θ from Q∗ onto

G := Z2

⊕

(
+∞
⊕

i=1

Z(i)),

where Z(i) ∼= Z, the ring of integers, for each i, given by

θ(x) = (sgn x, νp1
(x), νp2

(x), . . .),

is a group isomorphism. Therefore, there is a 1 − 1 correspondence between

maximal subgroups of Q∗ and G. Let M be a maximal subgroup of Q∗ and

denote the corresponding maximal subgroup of G by GM . Thus, there is a

prime number q such that G/GM
∼= Zq and we have qG ⊆ GM . Now two cases

can be considered.

Case 1. q ≥ 3. In this case qG ⊆ GM implies that Z2
⊕

(
+∞
⊕

i=1
qZ(i)) ⊂

GM . Thus, GM/Z2
⊕

(
+∞
⊕

i=1
qZ(i)) is a maximal subgroup of G/Z2

⊕

(
+∞
⊕

i=1
qZ(i)) ∼=

+∞
⊕

i=1
Z(i)

q , where Z(i)
q
∼= Zq for each i. This implies that there is an epimorphism

from Q∗ onto
+∞
⊕

i=1
Z(i)

q , given by fq(x) = (νpi
(x)). Thus, there exists a maximal

subspace W of
+∞
⊕

i=1
Z(i)

q such that M = f−1
q (W ).

Case 2. q = 2. In this case qG ⊆ GM yields that
+∞
⊕

i=1
2Z(i) ⊆ GM and hence
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GM/
+∞
⊕

i=1
2Z is isomorphic to a maximal subspace of G2. Therefore, there exists

a maximal subgroup of G2 say W, such that M = f−1
2 (W ). The other side of

the theorem is clear.

We remark that if we putW =< ei | i ≥ 2 >, where ei is the vector whose i-

th component is 1 and other components are zero, then we find Q+ = f−1
2 (W ).

(b) Assume that M is maximal subgroup of R∗. Then, we must have

R∗/M ∼= Zp for some prime number p. Thus, for each a ∈ R∗ we have

ap ∈M . Now, take the equation xp = b over R. We know that if p is odd, this

equation has a solution in R. This means that a = (a1/p)p ∈M , i.e., R = M .

So the only choice of p is p = 2. Thus, M = R+ is the only maximal subgroup

of R∗.

(c) Let F be algebraically closed and M be a maximal subgroup of F ∗. Then,

we have F ∗/M ∼= Zp for some prime p. Take an element x ∈ F ∗. Since x1/p

exists in F ∗ for any prime p, we conclude that x = (x1/p)p ∈ M , i.e., F ∗ = M

which completes the proof.

Now, let 0 6= [A] ∈ Br(F ) be cyclic. It is known that there is a cyclic

extension L/F , an automorphism σ ∈ Gal(L/F ), and a ∈ F such that A ∼=

(a, L/F, σ). Now, the map θ : F ∗ → Br(L/F ) ⊂ Br(F ), given by the rule

θ(c) = [c, L/F, σ], is a nontrivial group homomorphism (cf. Chapter 10 of [3]).

This homomorphism is used in the next result to show that F ∗ has a maximal

subgroup.

Lemma 2. Let F be a field and 0 6= [A] ∈ Br(F ). If A is cyclic, then F ∗

has a maximal subgroup.

Proof. Since A is cyclic, there exists a maximal subfield E, say, of A

such that E/F is a finite cyclic extension. Now, consider the homomorphism

rE/F : Br(F ) −→ Br(E) given by rE/F (X) = X ⊗F E. We have rE/F (A) =

A ⊗F E and since E is a maximal subfield of A we find rE/F (A) = 0, that

is A ∈ Br(E/F ). Now since E/F is a finite cyclic extension we have 0 6=

Br(E/F ) ' F ∗/NE/F (E
∗) and if [E : F ] = n, then we obtain F ∗n ⊂ NE/F (E

∗)

and this implies that F ∗ 6= (F ∗)n. Now the group F ∗/(F ∗)n is a nontrivial

abelian group of finite exponent and thus, by Baer-Prufer Theorem (cf. [10]),

F ∗ has a maximal subgroup.
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It is known that if F is local or global, then every F -central simple algebra is

cyclic (cf. [3] or [11]), and so F ∗ has a maximal subgroup. We also observe that

this result also follows easily from the fact that if F has a discrete valuation,

then F ∗ has a maximal subgroup. Therefore, we record this fact as a corollary.

Corollary 3. If F is a local or global field, then F ∗ has a maximal

subgroup.

Corollary 4. If Br(F ) is non-trivial, then either F ∗ has a maximal

subgroup or there exists a primitive p-th root of unity (p is a prime) ω,say, such

that F (ω)/F is a finite cyclic extension and (F (ω))∗ has a maximal subgroup.

Proof. Assume that p is a prime and 0 6= [A] ∈ Br(F ) such that p[A] = 0.

If Char F = p > 0, then, by Albert Main Theorem (cf. [3, p. 110]), A is a cyclic

F -algebra. Now, by Lemma 2, F ∗ has maximal subgroup. So we may assume

that CharF 6= p. If F contains a primitive p-th root of unity, by Merkurjev-

Suslin Theorem (cf. [12, p. 236]), A is similar to a tensor product of cyclic

F -algebras. Since [A] 6= 0 we conclude that at least one of the components in

the tensor product is non-trivial. Now, use Lemma 2 to complete the proof

of this case. Thus one may assume that F ∗ does not contain a primitive p-th

root of unity. Set A′ = A ⊗F L, where L = F (ω) and w is a primitive p-th

root of unity. If 0 = [A′] ∈ Br(L), then 0 6= Br(L/F ) = F ∗/NL/F (L
∗) and

so, by Baer-Prufer Theorem, F ∗ has a maximal subgroup. So suppose that

0 6= [A′] ∈ Br(L). Then the order of [A′] is clearly p and so by Merkurjev-

Suslin Theorem there exists a non-trivial cyclic L-algebra. Now, apply Lemma

2 to complete the proof.

To prove our main theorem in this connection, we shall need the following

Lemma 5. Suppose Br(F ) is nontrivial. Then Brp(F ) is nontrivial for

some prime p. Furthermore, there is a cyclic F -algebra under either of the

following situations:

(i) F has characteristic p, or

(ii) F has characteristic 6= p with enough roots of 1.
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Proof. Suppose that 0 6= [A] ∈ Brp(F ). Now, we have p[A] = 0. If

CharF = p, by Albert’s Theorem, A is cyclic and the result follows. Now,

assume that F has characteristic 6= p with enough roots of 1. By Merkurjev-

Suslin Theorem, A is similar to a tensor product of cyclic algebras. Since

0 6= [A] ∈ Brp(F ) we obtain a non-trivial cyclic algebra as desired.

We are now in a position to prove

Theorem 6. Assume that Br(F ) is non-trivial. Then Brp(F ) is nontrivial

for some prime p. Furthermore, F ∗ has a maximal subgroup under either of

the following situations:

(i) F has characteristic zero, or

(ii) F has characteristic p, or

(iii) F has characteristic 6= p with enough roots of 1.

Equivalently, if F has the above conditions and F ∗ is divisible, then Br(F )

is trivial.

Proof. Assume that CharF = 0. If F ∗ has no maximal subgroups, then

F ∗ is divisible. Now, by Lemma 3 of [9], F ∗ contains all roots of unity which

contradicts Corollary 4. If CharF = p > 0, by Lemma 5, there exists a cyclic

F -algebra B such that 0 6= [B] ∈ Brp(F ). Now, by Lemma 2 the result follows.

Finally, assume that F has characteristic 6= p with enough roots of 1. Again,

using Lemma 5 and Lemma 2 as above completes the proof of the theorem.

We observe that the converse of Theorem 6 is not true in general. For

let F be algebraically closed and consider F (x). Then we know that F (x)

has a discrete valuation and so F (x)∗ has a maximal subgroup whereas, by

Tsen-Lang Theorem (cf. [12, p. 211]), Br(F (x)) is trivial.

It is not known that if F ∗ is divisible, then Br(F ) is trivial without any

condition on the characteristic of F .

Remark. Here we establish a connection between the existence of a max-

imal subgroup of F ∗ and certain cohomology groups and modules. Let L/F

be a finite Galois extension and the 0-th cohomology group of L is nonzero,

i. e., H0(G,L∗) 6= {0}, where G = Gal(L/F ). Therefore, we conclude that

F ∗/NL/F (L
∗) is nonzero which implies that F ∗ has a maximal subgroup. Now,

assume that Fs denotes the separable closure of the field F . Let us put
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Gm = F ∗
s . It is known that the cohomology of the module Gm is impor-

tant, for example we have H0(F,Gm) = F ∗, and by Hilbert’s Theorem 90 we

also have H1(F,Gm) = 0 and H2(F,Gm) ∼= Br(F ). Suppose that µn is the

group of all n-th roots of unity and n is prime to the characteristic of F . Now,

we have the exact sequence,

1→ µn → Gm
n
→ Gm → 1,

which is referred to as the Kummer sequence and n denotes the endomorphism

x → xn. The corresponding cohomology sequence is also called the Kummer

sequence, which is as follows:

1→ µn(F )→ F ∗ n
→ F ∗ → H1(F, µn)→ 1

1→ H2(F, µn)→ Br(F )
n
→ Br(F ).

Thus, we find the isomorphisms H1(F, µn) ∼=
F ∗

F ∗n and H2(F, µn) ∼=n Br(F ).

If µn ⊂ F ∗, we obtain H2(F, µn ⊗ µn) ∼=n Br(F )⊗ µn(F ). Therefore, if Char

F = 0 and H2(F, µn ⊗ µn) 6= 0, then F ∗ has a maximal subgroup. Now, let

F be a field that has no maximal subgroup. Then F ∗ is divisible, and thus

F ∗p

= F ∗, where p is the characteristic of F , and so F is perfect. Since we

have F ∗ = F ∗q for all q 6= p we obtain H1(F, µq) = 1. Conversely, if F is

perfect and we have H1(F, µq) = 1 for all q 6= p, then F ∗ is divisible.

Now, we turn to study maximal subgroups of D∗ and show how normal

maximal subgroups of D∗ are related to maximal subgroups of F ∗ and val-

uations on F . We recall that if D is a division ring with center F , then D

is called of type 2 if for any two elements a, b ∈ D, the F -algebra F [a, b] is

finite dimensional. To state our next result, we need some more preparations.

Denote by G(D) the group D∗/F ∗D′. When D is algebraic over its centre F ,

G(D) is torsion (cf. [6]). Some algebraic properties of G(D) are investigated

in [4] and [8]. We continue our study with

Theorem 7. Let D be a division ring of type 2 with centre F and v be a

discrete valuation on F . If there exists a natural number m such that G(D)

has no element of order m, then D∗ has a maximal subgroup.

Proof. First we show that there exists a non-zero homomorphism of D∗

into the additive group of rational numbers Q. By assumption there is a prime
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p and natural number r such that G(D) has no element of order pr. Now define

a function w : D∗ −→ Q by w(a) = 1
[F (a):F ]

v(NF (a)/F (a)). We claim that w is a

homomorphism. To see this, suppose that S is a subalgebra of finite dimension

over F and a ∈ S, we prove that w(a) = 1
[S:F ]

v(NS/F (a)). Put [F (a) : F ] = n

and [S : F ] = s, it follows that n|s and NS/F (a) = (NF (a)/F (a))
s/n. This

implies that 1
s
ν(NS/F (a)) = 1

n
NF (a)/F (a) = w(a). Thus if a, b ∈ D∗ and

F (a, b) = S, then we find [S : F ] < ∞ since D is of type 2. Now since

NS/F (ab) = NS/F (a)NS/F (b) we have w(ab) = w(a) + w(b). Thus w is a

homomorphism as claimed. Now, since G(D) is torsion for any x ∈ D∗ there

exists n(x) > 0 such that xn(x) = tc, where t ∈ F and c ∈ D′, and pr does

not divide n(x). So we obtain w(x) = 1
n(x)

w(t), and this implies that 1
pr does

not belong to the image of w, Im(w), i.e., Im(w) 6= Q. We now claim that

Im(w) is not divisible. Since otherwise, assume that h/q ∈ Q\Im(w). It is

easily seen that w|F = v and so Im(w) 6= 0. Now if 0 6= u ∈ Im(w), then we

have uh ∈ Im(w) and the equation qux = uh has a solution in Im(w) which

is a contradiction. Consequently, Im(w) is not divisible and so Im(w) has a

maximal subgroup and therefore D∗ has a maximal subgroup.

Corollary 8. Let D be a finite dimensional division algebra over its

centre F . If F has a discrete valuation, then D∗ has a maximal subgroup.

In the next result we deal with maximal subgroups of D∗ which do not

contain F ∗, and the theorem also shows how maximal subgroups of D∗ arise

from those of F ∗.

Theorem 9. Let D be a division ring with centre Z(D) = F . Then we

have the following

(a) If M is a maximal subgroup of D∗ not containing F ∗, then Z(M) is a

maximal subgroup of F ∗.

(b) Assume that D is of finite index n over F and m is a maximal subgroup of

F ∗ containing Z(D′). Then D∗ has a maximal subgroup M containing m that

is normal in D∗.

Proof. (a) We have D∗ = F ∗M and thus D′ = M ′. This shows that M

is normal in D∗. Now, by a result of [8], we have Z(M) = F ∗ ∩M and so

Zp
∼= D∗/M = F ∗M/M ∼= F ∗/Z(M), for some prime number p. This implies
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that Z(M) is maximal in F ∗.

(b) Assume that m is a maximal subgroup of F ∗ which contains Z(D′).

Thus F ∗/m ∼= Zp for some prime number p. Consider the normal subgroup

mD′ of D∗. If mD′ = D∗, then we obtain m = mZ(D′) = F ∗ which is a

contradiction. So, take the nontrivial group D∗/mD′. We know that D∗/F ∗D′

is torsion of a bounded exponent dividing the index of D over F (cf. [7] or

[8]). Now, since F ∗/m ∼= Zp we conclude that the group D∗/mD′ is torsion of

a bounded exponent. Therefore, by Baer-Prufer theorem (cf. [10]), D∗/mD′ is

isomorphic to a direct product of cyclic groups Zri
, where ri divides the index

n for all i. In this way, we may obtain a maximal subgroup N of D∗ containing

mD′ and thus the result follows.

The next result shows how valuations on the centre F of a division ring D

enable one to obtain maximal subgroups of D∗ which are normal.

Corollary 10. Let F be a field with a Krull valuation whose value group

contains a maximal subgroup. Assume that D is a division algebra of finite

dimension over its centre F . Then D∗ contains a maximal subgroup M which

is normal in D∗.

Proof. Let v be a Krull valuation on F whose value group Γ, say, has a

maximal subgroup. Then, we have F ∗/U ∼= Γ, where U is the group of units of

the valuation. Since Γ contains a maximal subgroup , the isomorphism above

induces a maximal subgroup L of F ∗ containing U . We know that Z(D′) is

torsion. Thus Z(D′) ⊂ L. Now, Theorem 9 completes the proof.

Corollary 11. Let F be an algebraic number field, and assume that D

is an F -central division algebra. Then D∗ contains a maximal subgroup M

which is normal in D∗.

Proof. It is known that the p-adic valuation of Q extends to a discrete

valuation on F . Now, using Corollary 10 completes the proof.

Given a local field F , one may easily check that F has a discrete valuation.

Now, using Corollary 10 again, we obtain the following

Corollary 12. Let F be a local field, and assume that D is an F -central

division algebra. Then D∗ contains a maximal subgroup M which is normal in
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D∗.

In contrast to above results, we may observe that not any multiplicative

group of a division algebra contains normal maximal subgroups as the following

result shows.

Theorem 13. Let D be the real quaternion division algebra. Then D∗

contains no normal maximal subgroups.

Proof. LetM be a maximal subgroup of D∗ which is normal in D∗. Since

M is maximal we have D∗/M ∼= Zp for some prime number p. Take an element

x ∈ D\R, then R[x] ∼= C. Therefore, every element in D∗ has a p-th root and

so D∗ = M which is a contradiction and so the result follows.

Generally, in view of the above results, one is tempted to state the following

Conjecture. Let D be a non-commutative division ring. Then D∗ con-

tains a maximal subgroup.

Let F be a field. It is not true in general that each element a ∈ F ∗ is

contained in a maximal subgroup of F ∗ even if F ∗ has maximal subgroups.

For example, by Lemma 1, R+ is the only maximal subgroup of R which does

not contain negative real numbers. But for finite dimensional division algebras

the situation is different as the following result shows. To state the theorem,

we observe that when D is of finite dimension over its centre F , G(D) is torsion

of a bounded exponent dividing the index of D over F (cf. [8]).

Theorem 14. Let D be a division algebra of finite dimension over its

centre F . Then we have the following

(a) If G(D) is not cyclic, then each element x ∈ D∗ is contained in a normal

maximal subgroup of D∗.

(b) If G(D) is cyclic and non-trivial, and F ∗ contains a maximal subgroup

containing Z(D′), then each element x ∈ D∗ is contained in a normal maximal

subgroup of D∗.

Proof. (a) We know, by the Lemma of [6], that G(D) is torsion of a

bounded exponent dividing the index m of D over F . Since G(D) is not

trivial, by Baer-Prufer Theorem (cf. [10]), we have G(D) ∼= Zr1
× Zr2

× · · ·,
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where ri|m for each i. Therefore, there are maximal subgroups M of D∗ which

contain F ∗D′. Thus, if x ∈ F ∗D′, then we obtain x ∈M and the result follows.

So, we may assume that x /∈ F ∗D′. Put H = F ∗D′ < x >. Since D′ ⊂ H we

conclude that H is normal in D∗. If F ∗D′ < x >= D∗, then we have

G(D) =
F ∗D′ < x >

F ∗D′
∼=

< x >

F ∗D′∩ < x >
∼= Zt,

since G(D) is torsion. This contradicts our assumption that G(D) is not

cyclic. Therefore, F ∗D′ < x >6= D∗ and D∗/F ∗D′ < x > is an abelian

torsion group of bounded exponent. Thus, By Baer-Prufer Theorem, we obtain

D∗/F ∗D′ < x >∼= Zt1 × Zt2 × · · ·, where ti|m for all i. Now, take a maximal

subgroup L, say, of Zt1 × Zt2 × · · · and consider the inverse image M , say, of

L under the indicated isomorphism. Then, M is a maximal subgroup of D∗

which contains x and so the result follows.

(b) By the argument used in part (a), it is enough to consider F ∗D′ < x >=

D∗, where x /∈ F ∗D′. Now, we have D∗/D′ < x >∼= F ∗/F ∗ ∩ D′ < x >.

If D∗ = D′ < x >, then D∗/D′ ∼=< x > /D′∩ < x >. The cyclic group

< x > /D′∩ < x > can not be finite since otherwise D∗/D′ would be torsion.

This is not possible by Proposition 1 of [7]. Thus, we must have < x >

/D′∩ < x >∼= Z ∼= D∗/D′. But then we obtain D(1)/D′ ∼= nZ for some n ∈ Z,

where D(1) is the group of reduced norm 1 elements. This is not possible

either since D(1)/D′ is a torsion group. Therefore, D∗ 6= D′ < x >. Now,

since Z(D′)(F ∗∩ < x >) = (F ∗ ∩ D′)(F ∗∩ < x >) ⊂ F ∗ ∩ D′ < x > and

F ∗ contains a maximal subgroup L, say, containing Z(D′), by Theorem 9, we

conclude that there is a maximal subgroup M in D∗ containing D′ < x >. So

x ∈M which completes the proof.

It is believed that the condition in Theorem 14 for G(D) to be trivial is

superfluous. In fact, it is a conjecture in [4] that G(D) is rarely trivial and it

only happens for the real quaternions. So, Theorem 14 applies to a wide range

of division algebras. For examples in which all the conditions of Theorem 14

are satisfied, see [4].
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